Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://hdl.handle.net/20.500.12701/648
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Зулькарнаев, А. Б. | ru |
dc.date.accessioned | 2021-02-16T07:29:37Z | - |
dc.date.available | 2021-02-16T07:29:37Z | - |
dc.date.issued | 2019 | |
dc.identifier.issn | 1682-0363 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12701/648 | - |
dc.description.abstract | Анализ выживаемости является одним из самых распространенных методов статистического анализа в медицине. Статистический анализ вероятности трансплантации (или смерти) в зависимости от времени ожидания в «листе ожидания» – редкий случай, когда анализ выживаемости применяется действительно для оценки времени до наступления события, а не для косвенной оценки рисков. Однако чтобы оценка была адекватной, причина цензурирования должна быть независима от интересующего исхода. Больные в листе ожидания подвержены риску не только умереть, они могут быть исключены из yтого листа по причине ухудшения коморбидного фона или в результате трансплантации почки. Оценки Каплана – Мейера, Нельсона – Аалена, как и причинно-специфическая регрессионная модель пропорциональных рисков Кокса, являются заведомо предвзятыми оценками выживаемости в условиях наличия конкурирующих рисков. Поскольку конкурирующие события цензурируются, непосредственно оценить влияние ковариат на их частоту невозможно, так как отсутствует прямая связь между регрессионными коэффициентами и интенсивностью событий. Определение медианного времени ожидания на основе такого анализа порождает смещение отбора, что неизбежно приводит к предвзятой оценке. Таким образом, в условиях конкурирующих рисков yти методы позволяют исследовать особенности причинно-следственных связей, но не дают возможность сделать индивидуальный прогноз вероятности конкретного события. В регрессионной модели конкурирующих рисков коyффициенты регрессии монотонно связаны с кумулятивной функцией инцидентности и конкурирующие события оказывают непосредственное влияние на коyффициенты регрессии. Существенное ее преимущество –yто аддитивный характер функций кумулятивной инцидентности, всех возможных событий. При изучении yтиологических ассоциаций лучше использовать регрессионную модель Кокса, которая позволяет оценить размер yффекта различных факторов. Регрессионная модель конкурирующих рисков, в свою очередь, имеет бoльшую прогностическую ценность и позволяет оценить вероятность конкретного исхода в течение определенного времени у отдельно взятого пациента. | ru |
dc.description.abstract | Survival analysis is one of the most common methods of statistical analysis in medicine. The statistical analysis of the transplantation (or death) probability dependent on the waiting time on the "waiting list" is a rare case when the survival analysis is used to estimate the time before the event rather than to indirectly assess the risks. However, for an assessment to be adequate, the reason for censoring must be independent of the outcome of interest. Patients on the waiting list are not only at risk of dying, they can be excluded from the waiting list due to deterioration of the comorbid background or as a result of kidney transplantation. Kaplan – Meier, Nelson – Aalen estimates, as well as a cause-specific Cox proportional hazards regression model, are consciously biased estimates of survival in the presence of competing risks. Since competing events are censored, it is impossible to directly assess the impact of covariates on their frequency, because there is no direct relationship between the regression coefficients and the intensity of these events. The determination of the median waiting time on the basis of such analysis generates a selection bias, which inevitably leads to a biased assessment. Thus, in presence of competing risks, these methods allow us to investigate the features of cause-and-effect relationships, but do not allow us to make a prediction of the individual probability of a particular event based on the value of its covariates. In the regression model of competing risks, the regression coefficients are monotonically related to the cumulative incidence function and the competing events have a direct impact on the regression coefficients. Its significant advantage is the additive nature of the cumulative incidence functions of all possible events. In the study of etiological associations, it is better to use Cox regression model, which allows to estimate the size of the effect of various factors. The regression model of competing risks, in turn, has a greater prognostic value and allows to estimate the probability of a specific outcome within a certain time in a single patient. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | ru | en |
dc.publisher | Сибирский государственный медицинский университет | ru |
dc.relation.ispartof | Бюллетень Сибирской медицины. 2019. Т. 18, № 2 | ru |
dc.rights | Attribution-NonCommercial 4.0 International | en |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject | анализ выживаемости | ru |
dc.subject | статистика | ru |
dc.subject | причинно-специфический риск | ru |
dc.subject | метод Каплана – Мейера | ru |
dc.subject | модель пропорциональных рисков Кокса | ru |
dc.subject | регрессионная модель Файна и Грея | ru |
dc.subject | конкурирующий риск | ru |
dc.subject | survival analysis | en |
dc.subject | statistics | en |
dc.subject | cause-specific risk | en |
dc.subject | Kaplan – Meier method | en |
dc.subject | Cox proportional hazards model | en |
dc.subject | Fine and Gray regression model | en |
dc.subject | competing risk | en |
dc.title | Особенности анализа выживаемости на примере пациентов в «листе ожидания» трансплантации почки | ru |
dc.title.alternative | Features of survival analysis on patients on the «waiting list» for kidney transplantation | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dcterms.audience | Researches | en |
dc.identifier.doi | 10.20538/1682-0363-2019-2-215-222 | |
local.filepath | bsm-2019-2-215-222.pdf | |
local.filepath | https://bulletin.tomsk.ru/jour/article/view/2320/1583 | |
local.filepath | https://doi.org/10.20538/1682-0363-2019-2-215-222 | |
local.filepath | https://www.elibrary.ru/item.asp?id=39186074 | |
local.volume | 18 | |
local.issue | 2 | |
local.description.firstpage | 215 | |
local.description.lastpage | 222 | |
local.identifier.bibrec | RU/СибГМУ/MART/616.61-089.819.84/З-937-125872657 | |
local.localtype | Статья | ru |
dc.identifier.rsi | https://www.elibrary.ru/item.asp?id=39186074 | |
Располагается в коллекциях: | Бюллетень сибирской медицины |
Файлы этого ресурса:
Файл | Размер | Формат | |
---|---|---|---|
bsm-2019-2-215-222.pdf | 400,63 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons