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Background: Asthma is a heterogeneous disease in which age of
onset plays an important role.
Objective: We sought to identify the genetic variants associated
with time to asthma onset (TAO).
Methods: We conducted a large-scale meta-analysis of 9
genome-wide association studies of TAO (total of 5462 asthmatic
patients with a broad range of age of asthma onset and 8424
control subjects of European ancestry) performed by using
survival analysis techniques.
Results: We detected 5 regions associated with TAO at the
genome-wide significant level (P < 53 1028).We evidenced a new
locus in the 16q12 region (near cylindromatosis turban tumor
syndrome gene [CYLD]) and confirmed 4 asthma risk regions:
2q12 (IL-1 receptor–like 1 [IL1RL1]), 6p21 (HLA-DQA1), 9p24
(IL33), and 17q12-q21 (zona pellucida binding protein 2
[ZPBP2]–gasdermin A [GSDMA]). Conditional analyses
identified 2 distinct signals at 9p24 (both upstream of IL33) and
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17q12-q21 (near ZPBP2 and within GSDMA). Together, these 7
distinct loci explained 6.0% of the variance in TAO. In addition,
we showed that genetic variants at 9p24 and 17q12-q21 were
strongly associated with an earlier onset of childhood asthma
(P <_.002), whereas the 16q12 single nucleotide polymorphismwas
associated with later asthma onset (P 5 .04). A high burden of
disease risk alleles at these loci was associated with earlier age of
asthma onset (4 vs 9-12 years, P 5 1024).
Conclusion: The new susceptibility region for TAO at 16q12
harbors variants that correlate with the expression of CYLD and
nucleotide-binding oligomerization domain 2 (NOD2), 2 strong
candidates for asthma.This studydemonstrates that incorporating
the variability of age of asthma onset in asthma modeling is a
helpful approach in the search for disease susceptibility genes. (J
Allergy Clin Immunol 2016;138:1071-80.)

Key words: Asthma, age of onset, genetics, genome-wide associa-
tion study, survival analysis, conditional analysis, CYLD, NOD2
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Abbreviations used
CYLD: C
ylindromatosis (turban tumor syndrome)
eQTL: E
xpression quantitative trait locus
GSDMA: G
asdermin A
GWAS: G
enome-wide association study
IL1RL1: IL
-1 receptor–like 1
LCL: L
ymphoblastoid cell line
NFkB1: N
uclear factor of kappa light polypeptide gene enhancer in

B cells 1
NOD2: N
ucleotide-binding oligomerization domain containing 2
QC: Q
uality control
SNP: S
ingle nucleotide polymorphism
TAO: T
ime to asthma onset
ZPBP2: Z
ona pellucida binding protein 2
The prevalence of asthma has dramatically increased over the
past decades in high-income countries, affecting 5% to 16% of
persons worldwide.1 It is the most common chronic disease
among children, and a decrease in age of asthma onset has been
documented recently.2

Asthma is a complex and heterogeneous disease with variable
clinical expression over the lifespan.1 It is now well recognized
that asthma is not a single disease but rather a collection of
different phenotypes that might represent different manifestations
of a common underlying pathologic process or might be separate
disease entities.3 One of the simplest characteristics that can be
used to differentiate disease phenotypes is age at onset.4,5 Indeed,
asthma displays different characteristics according to the lifetime
period during which it occurs.6 Early age of onset is more
frequently associated with a family history of asthma, allergy
sensitization, and clinical response to triggers, whereas late-
onset disease is associated with eosinophilic inflammation and
obesity, more common in women, and generally less allergic.3

The risk of asthma has a strong genetic component, with
estimated heritability ranging from35%to95%.7Genome-wide as-
sociation studies (GWASs) have been successful in identifying
more than 20 loci associated with asthma.8 However, the genetic
factors identified to date account only for a small part of the genetic
component of the disease.1 This hidden heritabilitymight be linked
to the phenotypic heterogeneity of asthma.9 The vast majority of
GWASs conducted until now have analyzed asthma as a binary
phenotype. A few genetic studies have considered a more specific
definition of asthma incorporating the age of disease onset.
A genome-wide linkage screen conducted for time to asthma onset
(TAO) in French families revealed 2 regions, 1p31 and 5q13, poten-
tially linked to this phenotype.10 A single GWAS has been
performed on age of asthma onset in asthmatic children and led
to the identification of 2 loci not found by the previous asthma
GWASs; these loci on chromosomes 3p26 and 11q24 were associ-
ated with an earlier onset of childhood asthma.11 Moreover, the
effect of 17q12-q21 genetic variants identified by the first GWAS
of asthma12 was found to be restricted to early-onset asthma.13,14

Instead of stratifying the data according to age of disease onset
with an arbitrary threshold, one can integrate the age of onset in
modeling asthma risk by using survival analytic methodologies
applied to both asthmatic and nonasthmatic subjects. The goal of the
present study was to identify the genetic determinants underlying
TAO in a large meta-analysis of 5462 asthmatic patients and 8424
control subjects from9 independentEuropean-ancestry populations.
METHODS

Populations
We studied 13,886 subjects of European ancestry from 9 independent

studies (1 birth cohort, 5 population-based studies, and 3 family studies) that

were part of the GABRIEL European consortium on the genetics of asthma.14

A brief description of these studies with appropriate references is provided in

the Methods section and Table E1 in this article’s Online Repository at www.

jacionline.org. All of these studies had age of asthma onset and imputed ge-

netic data available.

For all studies, ethical approval was obtained from the appropriate

institutional ethic committees, and all subjects or children’s legal guardians

provided written informed consent.

TAO definition
The definition of asthma was based on report of doctor’s diagnosis, on

standardized questionnaires, or both (see the Methods section in this article’s

Online Repository). Tomodel TAO, we used age of onset or age at first wheeze

for patients with asthma, whereas in subjects who were free of disease on ex-

amination, we used age at last examination.

Genotyping
Genotyping, the single nucleotide polymorphism (SNP) imputation pro-

cess, and quality control (QC) criteria (for subjects and SNPs) for each study

are described in Table E1. All data sets were genotyped at Centre National de

G�enotypage (Evry, France) as part of the European GABRIEL asthma con-

sortium.14 QC and imputations were performed independently for each study.

Genome-wide imputations were conducted with MACH 1.0 software,15 with

reference haplotype panels from HapMap2. SNPs with imputation quality

scores (R2) of 0.5 or greater and minor allele frequencies of 1% or greater

were kept for analysis. Then, to further investigate the regions associated

with TAO at the genome-wide significant level, we used imputed data from

the 1000 Genomes Project and applied the same SNP QC criteria.

Statistical analysis and strategy of analysis
After the study-specific QC, a total of 13,886 subjects from the 9 cohorts

were included in the present study. In each data set association between TAO

and individual SNPswas investigated under an additive geneticmodel by using

a Cox proportional hazards regression model adjusted for sex and the first 4

principal components to account for population structure. A robust sandwich

estimation of variance16 was used in family data to take into account familial

dependencies. Moreover, because of the complex sampling design of the GA-

BRIELA study, survey regression techniques were used for this study to esti-

mate robust SEs (svy command in Stata software). Proportional hazard

assumptions for the main SNP effect were tested and never rejected. GWASs

of TAO were first conducted in each of the 9 data sets separately and then

combined through a meta-analysis to increase power and obtain more robust

findings. Meta-analyzed hazard ratios and 95% CIs were calculated by using

a fixed-effect (inverse variance)model. The CochranQ statistic was calculated

to assess the heterogeneity of the SNP effect across studies. If heterogeneity

was evidenced, a random-effectmodel was fitted.All analyseswere performed

with Stata software (version 13.1; StataCorp, College Station, Tex). After the

meta-analysis, we only kept meta-analysis summary statistics of SNPs

included in at least 66% of the studies (>6 of the 9 studies) to reduce the rate

of false-positive findings. The meta-analysis results were obtained for a total

of 2,387,926 SNPs. We used the classical threshold of a P value of 5 3 1028

or less to declare a meta-analyzed SNP effect as genome-wide significant.

Conditional analysis to uncover distinct signals at

TAO-associated loci
To identify distinct TAO-associated SNPs in each region harboring

genome-wide significant signals, we reanalyzed separately these regions in

each of the 9 studies. For that purpose, we added the region’s top SNP into the

primary Cox model as a covariate and tested the effect of each other SNP of

that region. Then the results were meta-analyzed by using the same strategy as

http://www.jacionline.org
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FIG 1. Manhattan plot showing association P values of the genome-wide association results for TAO from

the meta-analysis. The 2log10 of the P value for each of 2,387,926 SNPs (y-axis) is plotted against the

genomic position (x-axis). The solid red line indicates the genome-wide significance threshold of a P value

of 5 3 1028.
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the primary GWASs. If a secondary signal was detected in a region, a second

run of conditional analyses was performed to check for a third distinct signal in

that region. The length of the explored regions was based on regional

association plots and ranged from 200 to 500 kb depending on recombination

hotspots.

Expression quantitative trait locus analysis and

functional annotations
We queried whether significant SNPs (or their proxies) associated with

TAOs at a P value of 53 1028 or less and potentially secondary signals from

conditional analysis were expression quantitative trait loci (eQTLs). We used

existing eQTL databases in multiple tissues (especially blood and lung) for

populations of European ancestry (see theMethods section in this article’s On-

line Repository).17-23

Functional annotations of significant SNPs (or their proxies) were obtained

by using Encyclopedia of DNA Elements data24 provided by the HaploReg

tool.25

Relationship of TAO-associated loci with age of

asthma onset
In a first stepwe investigated in asthmatic patientswhether each of the SNPs

associated with TAOwere also associated with age of asthma onset by using a

nonparametric rank test, followed by a nonparametric equality ofmedians test.

In a second stepwe assessed the cumulative effect of risk alleles of SNPs found

to be associated with the age of asthma onset at step 1. For that purpose, we

used either the number of risk alleles or the quintiles of a polygenic score

distribution. The polygenic risk score is theweighted sum of the number of age

of asthma onset–associated alleles, with weight being the log of the adjusted

hazard ratio estimated in asthmatic patients only. The associations were tested

in 8 studies for which we had access to raw data (all data sets except the Avon

Longitudinal Study of Parents and Children) by using a cox proportional

hazard model adjusted on sex and principal components.

RESULTS

Description of populations
A total of 13,886 subjects were included in the present study

(5,462 asthmatic patients and 8,424 nonasthmatic subjects).
Asthmatic patients had a mean age of asthma onset of 12.5 years
(range, 0.5-75 years; see Fig E1 in this article’s Online Repository
at www.jacionline.org) and a mean age of 26.8 years at examina-
tion (mean per study ranging from 9.1-51.3 years), and 52.6%
were male. Nonasthmatic subjects had a mean age of 32.4 years
at examination (mean per study ranging from 8.9-55.8 years),
and 49% were male (see Table E1).
Genetic variants associated with TAO
TheManhattan and quantile-quantile plots of themeta-analysis

of TAO GWAS results are shown in Fig 1 and Fig E2 in this arti-
cle’s Online Repository at www.jacionline.org, respectively.
A total of 155 SNPs were associated with TAO at a genome-
wide significance level of a P value of less than 53 1028. These
SNPs clustered into 5 distinct chromosomal regions (Table I) that
included a new risk locus on 16q12 (near CYLD, 1 SNP) and 4 es-
tablished risk loci for asthma: 2q12 (IL-1 receptor–like 1
[IL1RL1]–IL18R1, 7 SNPs), 6p21 (near HLA-DQA1, 1 SNP),
9p24 (flanking IL33, 25 SNPs), and 17q12-q21 (121 SNPs span-
ning 389 kb, with the main signal located near zona pellucida
binding protein 2 [ZPBP2]). The regional association plots for
these genome-wide associated loci are shown in Fig 226 and Fig
E3 in this article’s Online Repository at www.jacionline.org,
and the forest plots for the top signal in each region are shown
in Fig E4 in this article’s Online Repository at www.jacionline.
org. Three additional loci were associated with TAO at a sugges-
tive significance threshold (5 3 1028 < P < 1026, Table I):
mitogen-activated protein kinase kinase kinase kinase 4
(MAP4K4; 2q11-q12), RAR-related orphan receptor A (RORA;
15q22), and IL-4 receptor (IL4R; 16p12-p11).

To determine whether any of the 5 TAO loci harbored
additional association signals, we performed conditional associ-
ation analysis in each region. For this analysis, a thresholdP value
of 2.1 3 1025 or less was used to declare significance, corre-
sponding to a Bonferroni threshold for 2382 independent tests.
These analyses evidenced 2 secondary signals (Table II and see
Fig E5 in this article’s Online Repository at www.jacionline.
org): (1) rs413382 in the 9p24 region at 73 kb of IL33
(P 5 9.7 3 1026 after conditioning on the top SNP and

http://www.jacionline.org
http://www.jacionline.org
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TABLE I. Top SNPs in main loci associated with TAO at genome-wide (P <_ 5 3 1028) and suggestive significance levels

(5 3 1028 < P < 1026)

Chromosome Marker Position*

Nearest gene or

genes (kb distance)

Effect/reference

allelesy
Effect

frequency

Time to asthma onset: n 5 13,886

Hazard ratio (95% CI) P valuez PHet value§

Loci with genome-wide significance (P <_ 5 3 1028)

2q12 rs10208293 102,966,310 IL1RL1k G/A 0.73 1.14 (1.08-1.19) 3.1 3 1028 .26

6p21 rs9272346 32,604,372 HLA-DQA1 (0.8) A/G 0.59 1.13 (1.08-1.17) 1.6 3 1028 .12

9p24 rs928413 6,213,387 IL33 (2) G/A 0.25 1.19 (1.13-1.25) 6.5 3 10216 .15

16q12 rs1861760 50,857,693 CYLD (22) A/C 0.04 1.28 (1.17-1.40) 4.2 3 1028 .11

17q12-q21 rs9901146 38,043,343 ZPBP2 (9)

GSDMB (17)

G/A 0.51 1.18 (1.13-1.22) 1.9 3 10216 .17

Suggestive loci (5 3 1028 < P < 1026)

2q11-q12 rs12468899 102,426,140 MAP4K4k G/A 0.69 1.12 (1.09-1.16) 1.7 3 1027 .89

15q22 rs11071559 61,069,988 RORAk C/T 0.85 1.16 (1.10-1.24) 8.3 3 1027 .96

16p12-p11 rs1805013 27,373,980 IL4Rk T/C 0.05 1.22 (1.13-1.32) 8.0 3 1027 .37

*Position in base pairs: build 37.3, National Center for Biotechnology Information.

�For the calculation of hazard ratios, effect alleles were designated as risk alleles. Effect frequency denotes the frequency of the effect allele.

�P values obtained from the single-SNP Cox model for TAO adjusted for sex and principal components (fixed-effect model when there was no significant evidence of heterogeneity

or random-effect model otherwise).

§PHet reflects the P value of the Cochran Q statistic across studies.

kThe SNP is located within the reported gene.

FIG 2. Regional association plot of the 16q12 region using Locuzoom software.26 SNPs are plotted with their

P values (2log10 values, left y-axis) as a function of genomic position (x-axis). Estimated recombination

rates (right y-axis) taken from the 1000 Genomes Project (EUR) are plotted to reflect the local linkage

disequilibrium structure around the top associated SNP (purple circle) and correlated proxies (according

to a blue to red scale from and r2 value of 0-1).
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P5 5.93 1028 in the primary meta-analysis) and (2) rs3859192
in the 17q12-q21 region within gasdermin A (GSDMA;
P 5 4.0 3 1026 after conditioning on the top SNP and
P 5 1.5 3 10213 in the primary meta-analysis). In contrast, at
the 2q12, 6p21, and 16q12 regions, inclusion of the most signifi-
cant TAO GWAS SNP as a covariate in association analysis re-
sulted in nearly complete reduction of the association signal in
these regions, suggesting that there was no evidence for a second
distinct genetic factor in these regions.
To obtain a denser map of the new TAO 16q12 locus, we
repeated association analyses using 1000 Genomes Project–
imputed SNPs. These analyses strengthened our original finding
with additional signals (3.83 1028 <_ P <_ 2.63 1027) located in
an intergenic region encompassing the lead SNP rs1861760 (see
Table E2 and Fig E6 in this article’s Online Repository at www.
jacionline.org). These SNPs were in moderate to high linkage
disequilibrium with rs1861760 (0.71 <_ r2 <_ 0.81) and thus did
not represent independent signals from that top hit. Similar

http://www.jacionline.org
http://www.jacionline.org


TABLE II. Secondary signals associated with TAO after stepwise conditional analysis in 9p24 and 17q12-q21 regions

Chromosome Marker

Nearest

gene (kb

distance) Position*

Effect/

reference

allelesy
Effect

frequency

Single-SNP analysis Fitted SNP(s)

Hazard ratio

(95% CI) P valuez PHet§

Hazard

ratio (95% CI) P valuez PHet§

9p24 region rs928413

9 rs413382 IL33 (73) 6,142,948 A/C 0.80 1.15 (1.08-1.22) 5.9 3 1028 .84 1.13 (1.06-1.20) 9.7 3 1026 .80

9 rs928413 IL33 (2) 6,213,387 G/A 0.25 1.19 (1.13-1.25) 6.5 3 10216 .15 — — —

17q12-q21 region rs9901146

17 rs9901146 ZPBP2 (9) 38,043,343 G/A 0.51 1.18 (1.13-1.22) 1.9 3 10216 .17 — — —

17 rs3859192 GSDMAk 38,128,648 T/C 0.48 1.16 (1.12-1.21) 1.5 3 10213 .90 1.11 (1.06-1.15) 4.0 3 1026 .74

For these 2 regions, this table contains the top TAO SNP in boldface (rs928413 and rs9901146 respectively) and the most significant SNP in the conditional analysis after fitting the

lead SNP in the region.

*Position: Position in base pairs: build 37.3, National Center for Biotechnology Information.

�For calculation of the hazard ratio, effect alleles were designated as risk alleles. Effect frequency denotes frequency of the effect allele.

�P values are obtained from the Cox model of TAO adjusted for sex and principal components.

§PHet reflects the P value of the Cochran Q statistic across studies.

kThe SNP is located within the reported gene.

TABLE III. Main cis-eQTL results for the top SNPs in genome-wide associated regions from the meta-analysis of TAO

Locus

SNP* (LD with

top SNP)

Alleles

(reference/

effect) Gene(s) Range of P values Tissue Sourcez

2q12 rs10208293 G/A IL18RAP, IL18R1 2.5 3 10213 to

9.8 3 102198
Blood, LCLs Blood eQTLs,

eQTL Browser

6p21 rs9272346 G/A HLA-DQA1/DQA2/DQAS1/

DQB1/DQB2, HLA-DRA/

DRB1/DRB5/DRB6, TAP2

1.3 3 1026 to

2.1 3 102121
LCLs, lung,

blood

eQTL_Chicago,GTEx,

blood eQTLs

16q12 rs1861760 C/A NOD2 3.6 3 10211 Blood Blood eQTLs

rs5743266�
(D9 5 1, r2 5 0.02)

CYLD, NOD2 5.0 3 1029 to

3.2 3 102120
Blood Blood eQTLs

rs7205760�
(D9 5 1, r2 5 0.005)

CYLD, NOD2 2.8 3 1026 to

4.0 3 10215
Lung, blood Lung eQTLs,

blood eQTLs

17q12-q21 rs9901146 A/G GSDMB, ORMDL3 3.8 3 1026 to

9.8 3 102198
Blood, LCLs Blood eQTLs, GTEx, eQTL

Browser, eQTL_Chicago

rs3859192 C/T GSDMA, GSDMB, ORMDL3 1.1 3 1027 to

2.5 3 10212
Lung, LCLs GTEx, eQTL Browser

We focused on eQTLs measured in blood, lymphoblastoid cell lines, and lung tissue.

LCL, Lymphoblastoid cell line; LD, linkage disequilibrium.

*Top genome-wide significant SNPs in TAO meta-analysis and secondary associations identified by conditional analyses are indicated in boldface.

�Haplotype reconstruction was done with Haploview; the effect allele of the top SNP (A-rs1861760) is always transmitted with the effect allele of its proxy (G-rs5743266 and G-

rs7205760).

�Interrogated databases: eQTL Browser (LCLs of British subjects with asthma or eczema),18 Blood eQTL Browser (nontransformed peripheral blood samples),20 Lung eQTLs

(lung tissue),17 GTEx eQTL Browser v4 (several tissues, among which were blood and lung tissue),23 and eQTL Chicago Browser (LCLs).19,21,22
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analyses conducted in the 4 other TAO-associated regions also
supported our original findings and did not find evidence for
any additional independent signal in these regions.

Overall, the 7 distinct SNPs (5 top SNPs and 2 secondary SNPs)
associated with TAO showed low heterogeneity between studies
(P > .11) and together explained 6.0% of the variance in TAO.
Functional annotations and effect on gene

expression
To provide some insights into the potential molecular mech-

anisms underlying the TAO-associated variants, we queried
whether the 5 top SNPs and 2 secondary signals (and their
proxies) were (1) tagging potentially deleterious SNPs, (2)
located in regulatory elements, and (3) reported to influence the
expression of 1 or more of the nearby genes (eQTLs at
P < 5 3 1025). We focused on the new TAO risk locus at the
16q12 region. Functional annotations for the remaining 6 loci
are presented in the Results section in this article’s Online Repos-
itory at www.jacionline.org, and eQTL data are presented in Table
III17-23 and Table E3 in this article’s Online Repository at www.
jacionline.org.

The 16q12 TAO-associated variants are located in an intergenic
region delimited by 2 recombination hotspots on each side near
CYLD (22 kb downstream). rs1861760 maps to the FOXJ1 and
SOX binding sites. This SNP and/or its proxies correlate with
the expression of CYLD in both blood and human lung tissues
and the expression of nucleotide-binding oligomerization domain
2 (NOD2) in blood (Table III and see Table E3).17,20
Relationship between TAO-associated variants and

age of asthma onset
To investigate whether TAO-associated SNPs influence age of

asthma onset, in asthmatic patients we compared the distribution
of age of asthma onset according to the number of risk alleles at

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 3. Relationship between TAO-associated SNPs and age of asthma onset. A, Association between age of

asthma onset and genotypes at individual loci. B, Median of age of asthma onset as a function of the total

number of risk alleles of SNPs found associated with the age-of-asthma onset and carried by asthmatic

subjects. C, Median of age of asthma onset by quintile of genetic risk score.
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each of the 7 main and secondary TAO-associated SNPs (Fig 3).
Asthmatic patients carrying 1 or 2 copies of the risk allele at
17q12-q21 SNPs (rs9901146 and rs3859192) or at 9p24
rs928413 had a younger age of asthma onset than noncarriers
(median of 6-8 vs 10 years [P <_ 6 3 1024] and 6-8 vs 9 years
[P 5 .002], respectively), whereas those having at least 1 copy
of the rs1861760 risk allele at 16q12 had a later age of asthma
onset than noncarriers (median of 10 vs 8 years, P5 .04). No sig-
nificant difference was found for the other 3 SNPs. We evidenced
that an increased number of risk alleles at these 4 SNPs was asso-
ciated with a younger age of asthma onset (median of 12 years for
carrying 1 risk allele to 4 years for carrying 6-8 risk alleles,
P 5 1024). Finally, we detected a strong association between
age of asthma onset and the polygenic risk score (from a median
of 10 years in the first quintile to 6 years in the last quintile,
P 5 4 3 1024).
Comparison of TAO GWAS results with previous

asthma GWASs
To investigate the effect of taking into account the age of asthma

onset in disease modeling through survival analysis, we explored
whether the top TAO SNPs were associated with asthma modeled
as a binary trait in the 9 cohorts included in the present study (see
Table E4). We also investigated the GABRIEL top SNPs in our
TAO meta-analysis (see Table E4).14 We observed a strong
decrease in heterogeneity of the SNP effect across studies in our
TAO analysis (PHet >_ .11) compared with the asthma binary trait
analyzed in the same data sets (PHet >_ .004), as well as in all
GABRIEL data sets (PHet >_ .0009), especially in the 9p24 and
17q12-q21 regions. The association signalswere alwaysmore sig-
nificant in TAO analysis compared with the binary trait analysis in
the same data sets. This increase in significance level was very
high: 100-fold for 2q12 and 16q12 and 104- to 106-fold for 9p24
and 17q12-q21. In fact, the asthma binary trait analysis only de-
tected 2 loci (HLA and GSDMA) at the genome-wide significance
level 7 TAO-associated loci. Conversely, at the genome-wide sig-
nificance level, the present TAO analysis identified 4 of the 6main
published GABRIEL regions14 and events at higher significance
for the 9p24 and 17q12-q21 regions (100- to 104-fold) compared
with GABRIEL significance levels. The 2 remaining GABRIEL
loci not detected by our TAO analysis were those with weaker
effects (odds ratio, 1.12 for rs744910 in 15q22 and rs2284033 in
22q13) in the GABRIEL meta-analysis.14



FIG 4. Map of the 16q12 region (build 37.3 position: 50,723,355 to 50,860,722) and haplotype reconstruction

for SNPs found to be associated with inflammatory bowel disease (among which was Crohn disease, blue),

leprosy (green), or asthma (red) or with expression of CYLD orNOD2 (black). The linkage disequilibrium plot

was obtained by using the Hapmap2 CEU reference sample from Haploview37 (values and colors reflect r2

and D9 values, respectively). The 16q12 top SNP (rs1861760) associated with TAO is indicated in boldface.
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Finally, we evaluated whether previously reported susceptibility
loci for asthma27 were associated with TAO in our meta-analysis
(see Table E5 in this article’s Online Repository at www.
jacionline.org). Among the 21 loci detected in European popula-
tions, 12 were replicated at 5% in our TAO meta-analysis, with
the same direction of effects. Among the 9 nonreplicated signals,
3 SNPs (or some proxies) were not available in our data, and the
remaining 6 loci had been reported for specific phenotypes: asthma
exacerbation, age of asthma onset per se in asthmatic children only
(quantitative trait), or childhood asthma (binary trait).11,28,29
DISCUSSION
By taking into account age of asthma onset in an asthma

association analysis, in this large meta-analysis including both
asthmatic and nonasthmatic subjects (adults and children), we
identified a new susceptibility locus at 16q12 associated with
TAO and confirmed the involvement of 6 other distinct loci
belonging to 4 regions in asthma pathogenesis (2q12, 6p21, 9p24,
and 17q12-q21). Genetic variants at 9p24 and 17q12-q21 were
strongly associated with an earlier onset of childhood asthma,
whereas the 16q12 lead SNP was associated with a risk of
later-onset asthma.

The most significant 16q12 genetic variant (rs1861760) is
located near CYLD and NOD2 and also maps to a binding site of
FOXJ1, a transcription factor associated with allergic rhinitis.30

Genetic variants located in a 130-kb region around rs1861760
were reported to be associated with immune-related diseases:
inflammatory bowel diseases (Crohn disease) and leprosy.31-36

Interestingly, haplotype reconstruction (Fig 437) showed that the
TAO rs1861760-A risk allele was always associated with SNP
alleles that conferred a decreased risk of Crohn disease
(rs17221417-C, rs5743289-C, and rs2076756-A located in
NOD2 and rs12324931-A located in CYLD)31-33,36,38 and of
leprosy (rs16948876-G located in intergenic region at 2 kb
from rs1861760).34 Indeed, GWASs revealed common genetic
susceptibility loci for asthma and other immune-related disorders,
suggesting shared molecular pathways involved in their cause;
however, opposite alleles appear to be at risk.39 Interestingly, an
opposite effect of the rs1861760-A allele is also observed at
the gene expression level. Thus the TAO risk allele at
rs1861760 correlated with both expression of CYLD and NOD2
in blood, although with an opposite effect.20 However, this
TAO risk allele was only associated with increased CYLD expres-
sion in lung tissue.17 CYLD encodes a deubiquitinating enzyme
that regulates diverse physiologic processes, including immune
response and inflammation.40 CYLD mainly acts as a negative
regulator of nuclear factor-kB (NFkB1) to protect the host
from an overreactive inflammatory response.40 Conversely,
NOD2, which plays an important role in the innate immune
response to intracellular bacterial LPSs, activates the NFkB1
pathway.41 NFkB1 is a pleiotropic transcription factor that acts
as a key regulator of immune and inflammatory genes, and acti-
vation of the NFkB1 pathway has been implicated in airway
inflammation and asthma.42,43 Moreover, the FOXJ1 transcrip-
tion factor that binds to the genomic region encompassing the
16q12 TAO-associated SNP (rs1861760) was described to inhibit
NFkB1 activity.44 Recently, CYLD has been shown to regulate
lung fibrosis in mice by inhibiting TGF-b signaling through a
decrease of SMAD3 protein stability.45 Of interest, SMAD3 has

http://www.jacionline.org
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been reported to be associated with asthma in previous
GWASs.14

Defining the phenotype is an important consideration because
phenotypic heterogeneity can reduce the power of GWASs.46 In
the present analyses we studied the variability of TAO in both
asthmatic and nonasthmatic subjects based on survival analysis
methods. The information used for such analysis was the age of
onset in asthmatic patients and the age at last examination or
death in nonasthmatic subjects. In such a model unaffected sub-
jects represent censored observations because they are still at
risk for disease, being perhaps too young to exhibit the trait.
This approach, which allowed combining the age of asthma onset
and disease status (affected/unaffected), led to a decrease in ge-
netic heterogeneity across studies and an increase in the power
to detect association signals (on a 106-fold increase compared
with the disease status–only analysis). More specifically,
increased evidence of association was observed in regions in
which age of asthma onset explained at least in part the genetic
heterogeneity, such as the 17q12-q21 locus, for which a restricted
SNP effect to a particular group of age of onset (early childhood–
onset asthma) was demonstrated.13 Moreover, this analysis led to
the identification of a new locus at 16q12 near CYLD and of an
additional signal in the 9p24 region. These results support the
hypothesis that a better consideration of the phenotypic
heterogeneity of asthma might help disentangle the genetic
heterogeneity of asthma.

Our study included both children and adults with asthma. Age
of disease onset might be subject to recall bias, especially among
subjects who are furthest from the time of first symptoms (eg,
adults with asthma in childhood), because it is often defined in a
retrospective manner. However, high accuracy of the self-
reported year of asthma onset by adult subjects has been shown
by 2 independent studies, including the European Community
Respiratory Health Survey, which was part of the present
study.47,48 Erroneous recall of age of asthma onset is unlikely to
have significantly affected the results because we observed little
genetic heterogeneity across studies (eg, childhood-onset asthma
reported by either adults or children).

It was suggested that some genetic variants can influence
asthma in an age-specific manner. Among TAO-associated SNPs,
we confirmed the association of 17q12-q21 SNPs with an early
age of asthma onset13,14 and evidenced for the first time that the
top 9p24 genetic variant near IL33 was also associated with early
childhood–onset asthma (median age of onset of 6-8 years in risk
allele carriers). Indeed, in the GABRIEL meta-analysis 9p24
SNPs were more strongly associated with early-onset (before
age 16 years) than late-onset (after age 16 years) asthma, but
this difference was not significant.14 Conversely, genetic variants
at the new susceptibility locus, 16q12, conferred a risk of
later-onset asthma (median age of onset of 10 years in risk allele
carriers). Moreover, we evidenced that a high burden of disease
risk alleles at these loci is associated with earlier age of asthma
onset (4 vs 9-12 years). This difference in asthma onset might
reflect the difference in patterns of onset of disease.49 Indeed,
we evidenced in the GABRIELA study that subjects with
persistent early wheezing carried more risk alleles than subjects
with transient early wheezing, and we confirmed the previous
association between persistent early wheezing and 9p24 and
17q12-q21 loci (data not shown). The 17q12-q21 genetic variants
were reported to be associated with the persistent childhood
wheeze phenotype, whereas 9p24 variants weremostly associated
with intermediate-onset wheeze but also with persistent early
wheeze.50,51 Moreover, 17q12-q21 SNPs were associated with
fraction of exhaled nitric oxide levels in children but not adults,
childhood severe asthma, and allergic rhinitis, and 9p24 SNPs
were associated with childhood severe asthma, asthma plus
rhinitis, atopic asthma, allergy, and eosinophil counts.51-57

In summary, we identified 5 regions harboring 7 distinct signals
associated with TAO, including the 16q12 region, which is
reported for the first time. Several lines of evidence suggest that
CYLD and NOD2, which are located in that region, are strong
candidate genes for asthma. This study demonstrates that
incorporating the variability of age of asthma onset in disease
modeling is a useful strategy to uncover new disease genes.
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Key messages

d 16q12 genetic variants are associated with TAO and
correlate with CYLD and NOD2 expression.

d Genetic variants at 9p24 (upstream of IL33) and 17q12-
q21 (nearby ZPBP2 and within GSDMA) are associated
with an earlier asthma onset, whereas variants at 16q12
are associated with later asthma onset.

d Taking into account the variability of age of asthma onset
in disease modeling can increase the power of identifying
new genes involved in asthma physiopathology.
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